Experimental Study on Recent Advances in Differential Evolution Algorithm
نویسندگان
چکیده
The Differential Evolution (DE) is a well known Evolutionary Algorithm (EA), and is popular for its simplicity. Several novelties have been proposed in research to enhance the performance of DE. This paper focuses on demonstrating the performance enhancement of DE by implementing some of the recent ideas in DE’s research viz. Dynamic Differential Evolution (dDE), Multiple Trial Vector Differential Evolution (mtvDE), Mixed Variant Differential Evolution (mvDE), Best Trial Vector Differential Evolution (btvDE), Distributed Differential Evolution (diDE) and their combinations. The authors have chosen fourteen variants of DE and six benchmark functions with different modality viz. Unimodal Separable, Unimodal Nonseparable, Multimodal Separable, and Multimodal Nonseparable. On analyzing distributed DE and mixed variant DE, a novel mixed-variant distributed DE is proposed whereby the subpopulations (islands) employ different DE variants to cooperatively solve the given problem. The competitive performance of mixed-variant distributed DE on the chosen problem is also demonstrated. The variants are well compared by their mean objective function values and probability of convergence. population-based stochastic global optimizer employing mutation, recombination and selection operators and is capable of solving reliably nonlinear and multimodal problems. However, it has some unique characteristics that make it different from other members of the EA family. DE uses a differential mutation operation based on the distribution of parent solutions in the current population, coupled with recombination with a predetermined parent to generate a trial vector (offspring) followed by a one-to-one greedy selection scheme between the trial vector DOI: 10.4018/jaec.2011040103 International Journal of Applied Evolutionary Computation, 2(2), 58-81, April-June 2011 59 Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. and the parent. The algorithmic description of a classical DE is depicted in Figure 1. Depending on the way the parent solutions are perturbed to generate a trial vector, there exist many trial vector generation strategies and consequently many DE variants. With seven commonly used differential mutation strategies (Montes et al., 2006), as listed in Table 1, and two crossover schemes (binomial and exponential), we get fourteen possible variants of DE viz. rand/1/bin, rand/1/exp, best/1/bin, best/1/exp, rand/2/bin, rand/2/exp, best/2/bin, best/2/exp, Figure 1. General structure of DE algorithm Table 1. Differential mutation strategies Nomenclature Variant
منابع مشابه
Fuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کاملFuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملA Green Competitive Vehicle Routing Problem under Uncertainty Solved by an Improved Differential Evolution Algorithm
Regarding the development of distribution systems in the recent decades, fuel consumption of trucks has increased noticeably, which has a huge impact on greenhouse gas emissions. For this reason, the reduction of fuel consumption has been one of the most important research areas in the last decades. The aim of this paper is to propose a robust mathematical model for a variant of a vehicle routi...
متن کاملOptimization of the Prismatic Core Sandwich Panel under Buckling Load and Yield Stress Constraints using an Improved Constrained Differential Evolution Algorithm
In this study, weight optimization of the prismatic core sandwich panel under transverse and longitudinal loadings has been independently investigated. To solve the optimization problems corresponding to the mentioned loadings, a new Improved Constrained Differential Evolution (ICDE) algorithm based on the multi-objective constraint handling method is implemented. The constraints of the problem...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAEC
دوره 2 شماره
صفحات -
تاریخ انتشار 2011